Работа опубликована в журнале Molecular & Cellular Proteomics и включена в подборку интересных исследований от редакции. «Когда инфраструктура госпиталя перегружена, врачам необходимы методы дополнительной оценки степени тяжести состояния пациентов и прогнозирования возможных осложнений. Получив такую дополнительную информацию, например за счет омиксных данных, врач может оптимизировать стратегию оказания помощи и более своевременно проводить необходимые реанимационные мероприятия пациентам, у которых самые высокие риски.
Как раз для этого и предназначено наше решение: искусственный интеллект помогает провести оценку степени тяжести пациента на основании омиксных данных по образцам крови и предсказать возможные осложнения, вплоть до летального исхода», — говорит профессор Евгений Николаев из Центра молекулярной и клеточной биологии.
Николаев и его коллеги исследовали мультиомиксные данные по нескольким стам пациентов, исход болезни которых известен и у которых брали кровь при поступлении в реанимацию, а также на вторые и седьмые сутки. За счет этого у каждого больного был измерен его подробный протеомный и метаболомный профиль, то есть уровни потенциальных биомаркеров в плазме крови.
«Мы также рассмотрели уровни метаболитов — эти малые молекулы, продукты обмена веществ, тоже имеют предсказательную силу. В итоге отобрали набор из 10 белков и пяти метаболитов, по которым алгоритм искусственного интеллекта может весьма точно предсказывать выживание пациента уже на момент его поступления в реанимацию», — комментирует Николаев, добавляя, что такое предсказание вовсе не исключает возможности субъективного решения со стороны врача.
Старший научный сотрудник Сколтеха Алексей Кононихин рассказывает: «Набор белков-маркеров, который мы определили, был валидирован на независимых данных из европейских клиник Шарите и Инсбрука, и на этой выборке наша модель тоже показала хорошую точность (более 80 процентов) прогнозирования летального исхода у пациентов».